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Abstract—Traveling Salesman Problem (TSP) is an NP-hard
combinatorial optimization problem. Approximation algorithms
have been used to reduce the TSP factorial time complexity
to non-deterministic polynomial time successfully. However,
approximation methods result in a suboptimal solution as
they do not cover the entire search space adequately. Further,
approximation methods are too time consuming for large input
instances. GPUs have been shown to be effective in exploiting
data and memory level parallelism in large, complex problems.

Our novel Parallel Iterative Hill Climbing (PIHC) algorithm
using the Variable-Nearest Neighborhood initial route gives
near-optimal solution of large instance TSP problem on the
GPU in a reasonable amount of time. We demonstrate improved
cost quality on symmetric TSPLIB instances ranging from 200
to 85,900 cities. Our GPU implementation achieves a speedup
of up to 279× over its sequential counterpart and 373× over
the state-of-the-art GPU based TSP solver. The implementation
gives a quality cost with error rate 0.71% in best case and
8.06% in worst case which is better than the state-of-the-art
GPU based TSP solvers.

Index Terms—Traveling Salesman Problem, Variable Nearest
Neighborhood, Approximation methods, GPU, Parallel Iterative
Hill Climbing, TSPLIB.

I. INTRODUCTION

A. The Traveling Salesman Problem

Traveling Salesman Problem (TSP)[1] is an NP-hard[2],
O(n!) combinatorial optimization problem. The time com-
plexity of TSP is factorial when solved using brute-force
method and exponential when solved using dynamic pro-
graming. Owing to its large number of applications in science
and engineering, time efficient TSP solutions are of great
importance.

The objective of TSP is to find the minimum route that
passes through each city exactly once, returning to the
originating city in the end. In short, in the map of n cities,
distance of a route π has to be minimized,

d(π) =

n∑
i=1

dπ(i),π(i+1) + dπ(n),π(1) (1)

where di,j is distance between city i and city j and π is
combination from (1, 2, ..., n)[3].

B. Exact and Approximation Approaches

Optimization problems are solved using two broad types;
viz., exact methods and approximation methods. In the worst-
case, exact methods have to explore the entire search space to

determine the optimal solution. Approximation methods give
near-optimal solutions by exploring a limited search space
in a reasonable amount of time[4]. In the worst case, finding
the optimal solution for n city TSP involves exploring (n−1)!
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feasible solutions in case of brute-force approach and n2×2n
feasible solutions in case of dynamic programing. While the
exact method always assures an optimal solution, the CPU
time is prohibitive for large n. Some examples of exact
methods are brute-force algorithm, dynamic programing,
branch and bound, branch and cut approaches. Due to the
factorial time complexity, exact methods are time-efficient
approaches to solve large TSP instances.

Approximation algorithms explore a subset of feasible
solutions by constraining the search space, and derive sat-
isfactory solutions in a reasonable amount of time. Ap-
proximation methods start with a random initial solution
and iteratively improve on it to converge to a near-optimal
solution until some termination criteria is met[4]. The ter-
mination criteria may include the number of iterations, an
optimal cost value, no improvement of solutions between
iterations, etc. Popular approximation approaches are iterative
local search, hill climbing, tabu search, simulated annealing,
ant colony optimization, and genetic algorithm. Selection
of subset of feasible solutions is dependent on the initial
solution. Once the initial solution is determined, a subset
of feasible solutions is generated based on it. Some feasible
solution generation methods are 2-opt, 3-opt, k-opt, crossover
and mutation.

In this paper, we have used the hill climbing approach as
the base algorithm to implement a GPU based solution for
the TSP problem. The initial route construction is performed
based on Nearest-Neighborhood Method, rather than setting
it up randomly or in-sequence. In the paper, we also reveal
the benefit of constructing an initial route in this manner.
Since Graphics Processing Unit (GPU) exploits data, memory
and task level parallelism in applications to improve their
performance significantly[5][6], we present the effectiveness
of the proposed parallel strategy by comparing it with state-
of-the-art iterative hill climbing based TSP solvers. Section II
presents work-flow of Iterative Hill Climbing(IHC) algorithm
and Section III presents the parallel strategy for IHC to solve
TSP.



II. ITERATIVE HILL CLIMBING ALGORITHM

Hill climbing is a popular approach used in approximation
methods to solve TSP. It is a searching strategy used to find
the best solution by performing iterative improvements over
an initial solution. The steps involved in the hill climbing
approach are:

• First, the initial solution, also called the candidate solu-
tion, s is determined.

• Once the initial solution is determined, its associating
cost, f(s), is calculated.

• Next, the neighborhood solutions, N(s) of initial solu-
tion are generated using swapping techniques like 2-opt
exchange.

• ∀s′ ∈ N(s), f(s
′
) is calculated using distance calcu-

lation method, where s
′

is neighborhood solution and
f(s

′
) is corresponding cost of s

′
.

• Cost of each f(s
′
) is compared with the initial cost f(s).

The best improved f(s
′
) on the f(s) is considered the

locally optimal cost.
• To move towards the globally optimal solution, this

algorithm must be called repeatedly. For each call, the
locally found optimal solution s

′
acts as the initial

solution s in the next iteration.
• This process continues until a termination criteria is met.

Termination criteria could be the number of iterations,
further improvement not possible or optimal solution
reached. For each call of the hill climbing procedure,
cost quality of the solution will potentially improve and
move towards the global optimal.

Important components of the iterative hill climbing approach
are initial solution construction and its neighborhood solu-
tions generation. These steps are explained in the section
below.

A. Initial Solution Construction
Construction of an initial solution is the first step in an

optimization problem using approximation methods. Initial
route is traditionally chosen sequentially or generated ran-
domly. We present an intelligent initial route generation
method using the Variable-Nearest Neighborhood (VNN).
Initial route construction methods are also discussed below.

1) Sequenced Route: This is a fundamental way to con-
struct the initial route where the route is made up of cities in
sequence Eg. 1,2,3,. . .,n,1. In the worst-case, the sequenced
route gives a maximal weighted Hamiltonian cycle. This
is because, route formation takes place without considering
distance between any pair of cities.

2) Random Route: Starting from the source node, the
initial route is constructed by choosing a random neighbor
for each node. The route computation complexity is O(n).
Similar to sequenced route, in the worst-case, the random
route also gives a maximal weighted Hamiltonian cycle.

Most approximation-based TSP implementations
[7][8][9][10][11][12] use randomly constructed TSP routes.
Both the above methods do not consider the distances while
identifying the neighbors.

(a) Before 2-opt move (b) After 2-opt move

Fig. 1: The 2-opt neighborhood generation mechanism

3) Variable-Nearest Neighborhood Route (VNN): The
VNN initial route construction is motivated by the k-NN
classification[13]. Instead of fixed k neighbors, we consider
variable length neighbors in order to set an effective initial
route. In this route construction technique, a random city is
chosen as the source city (we use first city). The next city is
the least cost neighbor among the n−1 unvisited neighbors of
the current city. The neighbor selection procedure continues
until all cities are visited. The last hop returns to the source
city. This route construction mechanism is called Variable-
Nearest Neighborhood (VNN) route construction. Since we
use symmetric TSPLIB instances, for n city problem, VNN
needs O(n2) time to construct initial route. To find an upper
bound on the cost of this initial route, assume costopt is opti-
mal cost and costroute is cost of constructed route. The upper
bound on cost of route is costroute

costopt
≤ 0.5× (log2n+ 1)[14].

B. Neighborhood Solution Generation

Once the initial route construction is determined, the next
task is to generate neighborhood solutions of the initial route.

1) 2-opt Move: 2-opt move is a fundamental technique
to generate neighborhood solutions. The n-city TSP problem
has (n−1)! different feasible solutions. 2-opt method reduces
the search space to be explored to an order of O(n2). In the 2-
opt method, neighborhood solution is generated by removing
two edges from the initial route, and then reconnecting the
two newly created sub-routes so that a different and unique
Hamiltonian Cycle is generated.

The 2-opt method includes the following steps to generate
neighbor:

• Consider a pair of any two cities as i and j. For every
pair, perform the bellow steps.

• Remove the edge between city i and city i+1, and the
edge between city j and city j + 1.

• Add a new edge between city i and city j, and another
new edge between city i+ 1 to city j + 1.

Figure 1 illustrates the 2-opt move mechanism between
city i and j. Figure 1(a) is the original graph before applying
the 2-opt move and Figure 1(b) is the newly generated
neighborhood after applying the 2-opt move.

The 2-opt neighborhood generation mechanism is per-
formed on all possible pairs of the cities in the initial route.
Therefore, number of neighborhood solutions generated with
2-opt move is n×(n−1)

2 , where n is the total number of cities,



and the time complexity of 2-opt neighborhood generation
mechanism is O(n2). The 3-opt move is variation of 2-
opt move. It significantly slows down the searching process
because it removes three edges and reconnects them in a such
way that a unique Hamiltonian cycle is formed. Since three
edges are removed and added, 3-opt mechanism explores
n×(n−1)×(n−2)

6 feasible solutions and the time complexity
of seeking the best neighborhood solution becomes O(n3).

III. PARALLEL ITERATIVE HILL CLIMBING (PIHC)
ALGORITHM

A. GPU Implementation

The Parallel Iterative Hill Climbing algorithm is presented
in this section. Figure 2 presents the flowchart of the complete
PIHC algorithm. Since GPU computing is heterogeneous in
nature, the task of solving TSP is distributed between CPU
and GPU. The details of the work carried out by CPU are
given as follows:

• Determine the initial route using one of the route
construction techniques described and calculate its cost
using the distance calculation formula.

• Allocate space on the GPU global memory for the initial
route, initial cost, distance matrix, and coordinates of
TSPLIB instances.

• Transfer required data for computation on GPU like
initial route and its cost, distance matrix, and coordinates
of TSPLIB instances.

• Determine optimal number of threads, blocks to be used
for computation and launch the kernel.

• After the kernel completion, checks fitness of the best
solution determined by GPU at each iteration to decide
whether to iterate again or not.

• When termination criteria is met, the search space
exploration is stopped. CPU returns the best improved
route and its cost.

The GPU is responsible for following tasks:
• Generate neighborhood solutions on initial route in

parallel. Each thread is involved in neighborhood gen-
eration.

• Each thread computes cost of its corresponding neigh-
borhood solution using the distance calculation method.

• Maintain synchronization among threads of each block
to get accurate results.

• Based on cost of each solution, choose minimal cost,
identify the corresponding thread and write these details
to global memory enabling the CPU to read these details
and decide whether next improvement is possible or not.

1) Neighborhood - Thread Mapping Strategy: This is an
important step that enables parallel execution of the specified
task. Therefore, the process of mapping the neighborhood
generation to threads is a crucial step to ensure performance
acceleration.

Each thread starts with a unique i and j obtained using
its thread id. The threads then concurrently generate all
neighborhood solutions and compute the respective costs.

Fig. 2: Parallel Iterative Hill Climbing (PIHC) algorithm
flowchart.

The total number of threads involved in this strategy is
n×(n−1)

2 using 2-opt move approach. In this case, the grid

dimension will be
⌈

n×(n−1)
2

block dimension

⌉
.

To optimize efficiency of PIHC algorithm, distances of
cities are calculated on-the-fly instead of keeping pre-
calculated distance matrix. The cities are arranged in order,
according to the route generated by 2-opt approach.

B. Xeon Phi Implementation

we are planning to solve the TSP problem on the Intel
Xeon Phi Knights Landing processor. This parallel architec-
ture should theoretically give more boost up to 2-opt with
VNN method. The plan here is to run the proposed method
in heterogeneous cluster of Intel Xeon Phis with use of
OpenMP+MPI. The proposed method can be optimized for
TSP by the efficient use of scaler tuning, vectorization, multi
threading and memory. The NVIDIA K40 GPU has 12GB
of RAM which is lower than 16GB high bandwidth memory
provided by Intel Xeon Phi KNL architecture which allows
us to load more cities than GPUs. The clock speed of KNL
is 1.4GHz which is double than K40 GPU, this allows more
instructions per cycle to be executed. Combined optimiza-
tion of Vectors AVX-512 and OpenMP parallel architecture
should theoretically give more boost up to 2-opt with VNN
method.

IV. RESULT ANALYSIS

The proposed Parallel Iterative Hill Climbing algorithm
has been evaluated over Nvidia’s Tesla K40m GPU. The GPU
has compute capability 3.5, 15 streaming multiprocessors
with each multiprocessor containing 192 cores and running
at 745 MHz frequency, global memory of 12 GB, per block
shared memory of 48 KB with 65536 registers available
at each block. The time analysis of sequential counterpart
has been carried out on a 64 bit system which has 8 cores
running at 3.6 GHz frequency. Evaluation has been performed
using CUDA version 8 and also on OpenCL version 1.2. The



optimal cost of TSPLIB instances are known, therefore we
have considered the symmetric TSPLIB[15] instances rang-
ing from 200 to 85900 cities to determine the effectiveness
of PIHC TSP solver in terms of speedup as well as cost. We
present a time analysis of intial route construction methods,
and time as well as cost analyses of the PIHC algorithm.

A. Initial Route Construction Result Analysis

Initial route construction is a crucial step in the approxi-
mation method. The time analysis of the three variations of
initial route construction are presented.

1) Time Analysis: Figure 3 presents total execution time of
PIHC TSP implementations. Each input instance is executed
for the three initial route construction methods. Results for
the TSPLIB instances from 200 to 18512 cities are shown.
For moderately sized TSP instances ranging from 200 to 5934
cities, all three route construction mechanisms take similar
time to find the near-optimal solution. As the number of cities
increases (TSPLIB instances rl15934 and above), the total
execution time taken by both sequenced and random route
also increase drastically.
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Fig. 3: Total PIHC execution time of sequenced, random,
VVN initial route construction mechanism for TSPLIB in-
stances

For the d18512 instance, the total execution times required
are 873.67 s, 1258.91 s and 99.94 s respectively. Using
Variable-Nearest Neighborhood route as the initial solution
makes PIHC GPU implementation 8.78× faster than GPU
implementations that use sequenced route, and 12.59× faster
than random route construction. This happens because VNN
route gives a good quality solution at the initial stage itself.
Hence, PIHC needs lesser number of iterations to reach near-
optimal solution compared to approaches using other initial
route configuration methods.

The Variable-Nearest Neighborhood initial route construc-
tion mechanism takes care to choose minimal weighted
neighboring city while constructing the initial route, unlike
sequenced and random mechanisms. From the presented
analysis, we conclude that the VNN route construction

mechanism creates an initial solution closest to the optimal
solution leading to faster PIHC TSP solvers.

B. Performance Analysis of PIHC

In this section we compare our PIHC implementation
against two well-known state-of-the-art GPU-based TSP
solvers using approximation methods namely TSP2.1[16] and
LOGO[17]. We consider TSPLIB[15] instances ranging from
200 to 85900 cities, whose optimal costs are known in the
TSPLIB testbed. The cost quality of LOGO TSP is reported
in[17]. To obtain the cost quality of TSP2.1 (http://cs.txstate.
edu/∼burtscher/research/TSP GPU/index.html) solver, each
instance is run once using the flags −O3−arch = sm 35−
use fast math, 100 restart. The cost and time taken are
recorded.

1) Cost Analysis: Table I presents the cost quality analysis
of the state-of-the-art TSP solvers along with our implemen-
tation based on the PIHC algorithm. The PIHC algorithm
gives the best quality solutions (nearest to the optimal) for
every input instance compared to LOGO and TSP2.1. The
error ranges (best case - worst case) for PIHC , LOGO,
TSP2.1 are : 0.71% - 5.44%, 4.71% - 11.66%, 4.76% -
12.12% respectively.

The primary reason for the better quality results of
the PIHC compared to the LOGO and TSP2.1 is the
Variable-Nearest Neighborhood initial route construction
technique. VNN provides an initial route whose cost is
within 0.5×(log2n+1) times the optimal cost for each input
instance. Starting from such an initial route, the search space
for the hill climbing algorithm is reduced and a higher quality
route is obtained within a reasonable time. TSP2.1 uses a
random tour as its initial route, whereas LOGO uses Multiple
Fragment[18] heuristic to determine initial route.

2) Time Analysis: Since TSP2.1 source code is available,
it was run on the same GPU as the PIHC, and the execution
times were recorded. We report the full execution times
from the start to the end of the respective implementation
(including both the CPU and GPU time). Table I shows
the execution time comparison of TSP2.1 with our PIHC
approach. Compared to the TSP2.1, PIHCglobal gives a
speedup in the range of 0.23× - 206× for the instances of
the sizes 200 - 33810 cities. The TSP2.1 implementation
for pla85900 instance did not finish on our GPU. The
PIHCvector implementation actually outperformed even the
PIHCglobal implementation, giving a speedup of 0.12× -
373.22×. The increased speedup is primarily due to the fact
that optimizations are performed using the fast built-in vector
operations for representing coordinates.

V. CONCLUSION

We present a GPU-based Parallel Iterative Hill Climb-
ing (PIHC) algorithm using Variable-Nearest Neighborhood
(VNN) initial route construction to solve symmetric TSPLIB
instances ranging from 200 to 85900 cities in a reasonable
amount of time with good quality cost. We reveal the benefit

http://cs.txstate.edu/~burtscher/research/TSP_GPU/index.html
http://cs.txstate.edu/~burtscher/research/TSP_GPU/index.html


TABLE I: Cost quality and execution time comparison of the proposed PIHC algorithm with the state-of-the-art TSP solvers
using TSPLIB instances. Values in the parentheses are deviations from the optimal cost.

Instance Cost (error rate) Total Execution Time (seconds)

LOGO TSP2.1 PIHC Optimal TSP 2.1 PIHCglobal PIHCvector Speedup

kroA200 31685 (7.78%) 30768 (4.76%) 29579 (0.71%) 29368 0.0412 0.1 0.34 0.12
rat783 9658 (9.67%) 9649 (9.57%) 9002 (2.22%) 8806 0.7974 0.37 0.35 2.28
vm1084 267210 (11.66%) 257729 (7.70%) 250992 (4.88%) 239297 2.3 0.39 0.36 6.39
pcb3038 147690 (7.25%) 153150 (11.22%) 145190 (5.44%) 137694 48.327 0.83 0.66 73.22
fnl4461 194746 (6.67%) 201764 (10.51%) 189881 (4.0%) 182566 154.02 1.8 1.33 115.8
rl5934 582958 (4.84%) 623463 (12.12%) 581802 (4.63%) 556045 397.65 2.27 1.97 201.85
d15112 1652806 (5.06%) 1738705 (10.52%) 1650340 (4.91%) 1573084 6214.77 55.81 32.67 190.23
d18512 675638 (4.71%) 716925 (11.11%) 671000 (3.99%) 645238 11500.96 99.94 58.15 197.78
pla33810 69763154 (5.21%) 73840715 (11.79%) 69494989 (5.21%) 66048945 70792.96 342.17 189.68 373.22
pla85900 149708033 (5.14%) - 148470854 (4.27%) 142382641 - 5024.64 - -

of using VNN approach to construct the initial route rather
than setting up randomly or in-sequence.

Our proposed PIHC is a two pass approach. In the first
pass, we construct the initial route using VNN. In the second
pass, improvement is done on the initial route by applying
our Parallel Hill Climbing Algorithm iteratively until the
termination condition is met. The PIHC implementation
using VNN is 8.78× than the sequenced route approach
and 12.59× faster than the random initial route construction
mechanisms. The worst-case cost of the initial route using
VNN is within 1.08× the optimal cost of corresponding
TSPLIB instance. For the sequenced and random initial route
construction mechanism, the worst-case cost initial routes
are 92.83× and 94.12× TSPLIB optimal cost. Hence, the
VNN route construction approach significantly reduces the
search space and results in a good cost quality solution in a
reasonable amount of time.

Proposed approach is implemented using CUDA and
OpenCL, and then evaluated and compared with LOGO
and TSP2.1 GPU based state-of-the-art TSP solvers. It is
observed that our implementations provide very good results
with error rate 0.7% in best case and 8.05% in worst case.
The proposed PIHCglobal implementation achieves 206×
speedup over GPU based TSP2.1 implementation and 154×
speedup over the sequential implementation. The correspond-
ing speedups achieved by the PIHCvector implementation are
373× and 279× respectively. The faster execution of the
PIHCvector implementations is a direct consequence of the
built-in vector.
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